为您找到相关结果约1312

  • SMM:新能源产业链新交易、新定价、新金融【SMM新能源峰会】

    在由SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 - 储能产业论坛 上,上海有色网金属交易中心有限公司总经理 董谌围绕“新能源产业链新交易、新定价、新金融”的话题作出分享。 有色网交易中心 - 现货交易+价格发现+供应链金融服务 复制线下交易流程,但是更公平、更安全 我们的使命 1. 促进成交 面向全国范围有色金属行业引入大量优质交易商,撮合交易,促进成交; 2. 保障交易安全 搭建高安全的交易平台、支付通道,充分保障交易安全; 3. 降本增效 充分利用互联网的覆盖面积广、传播速度快的特点;提升交易效率、降低交易成本; 4. 价格发现 成交数据辅助价格发现,纳入有色网报价; 5. 提供金融服务 推荐优质客户、甄别优质资产,助力金融资源进入实体产业链。 能力与责任 发展历程 业务数据 三位一体的交易金融服务平台 安票达:承兑汇票贴现等,低风险金融服务。 安汇达:全线上的现货交易平台。 安融达:供应链金融服务。 平台基础 交易牌照: 上海有色网金属交易中心依据国发【2011】38号、国办发【2012】37号、中(沪)自贸管【2014】266号、沪商市场【2014】595号等政策文件的要求规划设计的新型全线上现货交易市场,拥有上海最高标准现货交易所牌照。 支付通道: 全国第二、有色行业唯一,接入人民银行下属上海清算所“大宗商品清算通”,国内最高规格第三方资金清算结算。 交易平台: 安全、高效的现货交易平台“安汇达”,截至2023年,已签约企业 2300家,累计交易金额 8500亿;2023年经清算通交易金额超1900亿。 交收及融资监管: 通过直连合作仓库底层数据库的电子仓储系统,实现电子库存单的交易和融资功能。同时,结合AI智能识别技术打造动产监管系统,实现全天候、24小时无人工干预的动产融资监管。 平台模式 用技术工具打造安全、高效、低成本的大宗现货交易平台,并为供应链金融搭建底层系统。 核心系统 清算通支付结算系统 “央行版企业间支付宝”: 人民银行重要金融基础设施,是专为大宗现货交易平台服务的企业间大额资金清算结算通道。 100%保障交易及资金安全: 配套交易场景,灵活冻结保证金;基于交易双方合同约定和指令,实时资金划付;防止资金受账户冻结、限额等异常情况影响。 无需额外开户,网银直接签约: 交易商可使用已有银行结算户,在企业网银即可完成清算通签约。 网银回单,单证齐全: 所有资金回单、对账单都可以在企业网银查询、下载。完全支持现有财务、税务操作要求。 浦江数链 主要功能及应用场景 平台交易功能基于现货交易习惯定制开发 特色功能-物联网监控系统 安票达-承兑汇票贴现直通车 安票达-对接多家银行,让报价“卷起来” 绿色通道: 合作银行为安票达用户提供绿色通道,支持线上注册、准入等操作,企业需准备的材料简单; 价格优势: 渠道专属优惠贴现报价,合理让利给产业链企业,真正降低企业财务成本; 一站式贴现: 安票达助力企业一站式完成实时查价、比价、贴现、历史贴现记录查询等贴心操作。 安融达-供应链融资业务 ​​​​​​​ 应用场景: 短期拆借: 场景:利用合作仓库的有色金属库存解决临时性资金缺口 优势:统一定价、无最低融资期限、无最低融资资金额限制 最低货物池: 场景:设置每日最低货物池质押额,形成固定融资额 优势:按融资需求,保有最低持货水平线,根据融资方式改变贸易习惯 动态货物池: 场景:根据贸易需求,以置换押品或部分还款方式动态调整融资额 优势:融入企业日常贸易,替换企业高息借款。

  • 碳酸锂主力合约下跌1.27%【SMM期评】

    》查看SMM钴锂产品报价、数据、行情分析 》订购查看SMM钴锂产品现货历史价格走势 SMM5月31日讯:5月31日,碳酸锂2407主力合约下跌1.27%,据数据显示,当日碳酸锂2407主力合约开于106000/吨,收于104850元/吨,成交量为102574手,持仓量为161329手,较上一交易日减少1113手。SMM当日电池级碳酸锂现货报价103900-107900元/吨,均价105900元/吨,较上一工作日减少100元/吨。从走势来看,当日碳酸锂价格开盘后平稳运行一段时间,运行至早盘尾盘时下挫探低,短暂触及日内低点104200元/吨后开始回升,随后横盘震荡整理至收盘,最终下跌1.27%。 SMM新能源研究团队 王聪 021-51666838 马睿 021-51595780 林子雅 86-2151666902 袁野 021-51595792 冯棣生 021-51666714 徐颖 021-51666707 吕彦霖 021-20707875 柳育君 021-20707895 于小丹021-20707870 任晓萱 021-20707866 周致丞021-51666711

  • 湘南地区锂矿分布广规模大 Li2O探明+潜在资源500-600万吨【SMM新能源峰会】

    在由SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 - 储能产业论坛 上,中国地质调查局武汉地质调查中心 教授级高工 卢友月介绍了湘南地区锂矿成矿规律,并对其资源潜力作出分析。她表示,湘南地区锂矿主要矿床类型为蚀变花岗岩型、云英岩型,其次为伟晶岩型、热液脉型、细晶岩型、矽卡岩型,成矿与燕山早期、燕山晚期高分异花岗岩密切相关。湘南地区锂矿具有分布广、规模大、埋藏浅、品位低、共伴生组分多、易采选等特点,具有很好的勘查开发价值。湘南地区锂矿资源潜力大,可划分为5个找矿远景区,Li 2 O探明+潜在资源500-600万吨,区内产业配套齐全,开发利用条件成熟,有望成为新的大型锂矿勘查开发基地。 一、锂矿资源概况 战略性矿产/关键金属/关键矿产:是国际上近年来提出的新概念,是指对新材料、新能源、信息技术、航空航天、国防军工等新兴产业具有不可替代重大用途的一类金属元素及其矿床的总称。 各国各机构一般根据各自的经济重要性和供应风险等因素来确定关键矿产清单。 锂是目前地球上最热门的商品之一,也被称为“新油”或“白金”,全球锂资源争夺已经“白热化” 随着当前新兴技术产业的快速发展,锂被广泛应用在高能电池、储能、航空航天、受控核反应等多个新兴行业和领域,享有“工业味精”、“宇航合金”、“白色石油”和“21世纪最有应用潜力的金属”等美誉。全球碳中和背景之下, 新能源产业的蓬勃发展催生了全球对锂需求的不断增长,中国、美国、欧盟、日本等主要经济体加大对锂资源重视程度,将之列为战略性/关键性矿产。 全球锂资源分布高度集中,主要在南美锂三角地区(阿根廷、玻利维亚和智利)、澳大利亚、中国、美国、刚果(金)、津巴布韦和加拿大。 全球锂矿资源供应格局基本形成 南美盐湖锂矿产能集中在四家龙头企业,行业集中度高;澳大利亚固体锂矿产能均被长协锁定,且短期产能增量有限;我国锂矿资源供给占全球比例低,但开发积极性正在提升;非洲锂矿将成为锂产能扩张新增长点,但短期内不会冲击全球供需格局。 矿床类型包括盐湖卤水型、伟晶岩型(包括相关的蚀变花岗岩型及云英岩型)、黏土型、锂沸石型、其他卤水型(油气田卤水和地热卤水)和离子吸附型(许志琴等,2021;隰弯弯等,2023)。 中国目前80%的锂来源于硬岩型,华南作为中国最重要的三个硬岩型锂矿带(新疆阿尔泰、川西和华南)之一,是我国花岗岩型锂矿床(如江西宜春、湖南正冲和尖峰岭、广西栗木等)最为集中产出区。 卤水型及黏土型锂矿虽然储量巨大,但开发利用技术尚待突破。近年来开发的主要是伟晶岩型锂矿,其中蚀变花岗岩型和云英岩型锂矿品位一般较低,选矿难度大,但随着锂矿价格提升及云母提锂技术的不断提高(周贺鹏等,2020;何飞等,2022),加上其分布广、规模大、采矿难度小等,目前已呈现出显著的规模效应,是中国当前锂矿勘查和开采的主要对象(王登红等,2022)。在此背景下,湘南地区一跃成为全国锂矿勘查开发的重点地区之一。 紫金矿业、赣锋锂业、大为股份、上海安能、大中赫、志存锂业等投资建厂,锂产业链意向投资额超2000亿元。 二、湘南地区成矿地质背景 位于南岭成矿带和钦杭成矿带交汇部位,扬子和华夏板块结合部,区内自中生代以来发生强烈的构造岩浆作用和金属矿产的爆发式成矿,锡锂钨铍等矿产资源丰富。 地层发育较全,除志留系缺失外,从青白口系到第四系均有出露; 主要经历了加里东、印支和燕山等几次大的构造岩浆活动事件,由此形成了由断裂、褶皱、构造盆地等组成的复杂变形格架; 侵入岩主要为加里东期、印支期、燕山早期、燕山晚期花岗岩。主要矿床成因类型:云英岩型、蚀变花岗岩型、热液脉型、矽卡岩型等。 按元素组合及其与相关岩体的关系大致可分为两大类:一类是与酸性岩浆岩(花岗岩类)有关的钨、锡、铌、钽多金属矿床,如柿竹园、香花岭、尖峰岭、正冲等;另一类是与中酸性岩浆岩(花岗闪长岩类)有关的铜、钼、铅、锌、金矿床,如水口山-康家湾、宝山、铜山岭、大坊等。 锡锂多金属成矿主要与晚期高分异花岗岩关系密切。 晚期高分异花岗岩、云英岩等及其相关的W、Sn、Li、Rb、Nb、Ta 、Be等。 发现大义山、香花岭、界牌岭等锡多金属矿集区锂铷矿资源潜力巨大,成果广泛应用于区域锂矿勘查和投资。 三、锂矿成矿规律 主要矿床类型及基本特征 地质找矿标志 :首先花岗岩体出露或隐伏花岗岩分布地区,蚀变强烈,如云英岩化、白云母化、萤石化、钠长石化、绿泥石化等。其次是小岩体出露区(包括大岩体内的小岩体),尤其是蚀变强烈的小岩体,为有利有效的找矿标志。 地球物理场找矿标志: 磁异常、重力异常、高极化率异常,往往指示可能存在隐伏岩体和矿体。 地球化学场找矿标志: 锂、铷、锡、铌、钽、铯、铍等含量较高,在含量总体高的背景上,重叠性好的各元素高值异常区(带)。 遥感影像特征及识别标志: 环状构造遥感影像特征及识别标志,多为岩体或褶皱分布区。 地质构造演化对锂矿的控制: 锂矿主要与中生代滨西太平洋构造-岩浆事件有关。 岩浆作用、构造等对锂矿的控制: 岩体内部形成云英岩型、蚀变岩体型锂矿,外接触带形成热液脉型锂多金属矿床。蚀变岩体型锂锡矿的受晚期岩体凸起部位控制。锂铷铌钽等战略性矿产与高分异花岗岩及云英岩关系极为密切。 时间分布规律: 锂矿主要有两个成矿时代,其中大多数矿床形成于燕山早期(160-150Ma),少数矿床形成于燕山晚期(95-86Ma) 。 空间分布规律: Nb、Ta、Li、Rb→Be→Mo→W、Sn→Bi、Cu→Pb、Zn、Ag→Sb、Au→Hg 。 四、资源潜力及找矿方向 湘南地区查明资源量总计35万吨,1000m以浅预测资源总计159万吨。 举例: 1、上堡-大义山找矿远景区(50-60万吨) 2、九嶷山找矿远景区(130-150万吨) 3、香花岭-尖峰岭找矿远景区(250-300万吨) 4、千里山-界牌岭找矿远景区(50-60万吨) 5、万洋山-诸广山找矿远景区(20-30万吨) 五、总结 1. 湘南地区锂矿主要矿床类型为蚀变花岗岩型、云英岩型,其次为伟晶岩型、热液脉型、细晶岩型、矽卡岩型,成矿与燕山早期、燕山晚期高分异花岗岩密切相关。 2. 湘南地区锂矿具有分布广、规模大、埋藏浅、品位低、共伴生组分多、易采选等特点,具有很好的勘查开发价值。 3. 湘南地区锂矿资源潜力大,可划分为5个找矿远景区,Li 2 O探明+潜在资源500-600万吨,区内产业配套齐全,开发利用条件成熟,有望成为新的大型锂矿勘查开发基地。

  • 目前锂电回收处于初级阶段 未来将以属地化处理后 再集中再生为主 【SMM新能源峰会】

    在由SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 - 锂电回收产业论坛 上,湖南锂汇通新能源科技有限责任公司总经理 李重洋介绍了锂电回收行业现状以及其未来的发展趋势。他表示,目前动力电池回收领域,存在着小作坊猖獗的现象。这些小作坊主要是非法拆车厂、非法电池倒卖商、非法电池处理商。它们由于不需要进行环保成本和运营成本的投入,在回收价格上有极大的优势,通常会进行高价回收,挤压正规渠道的利润空间和市场份额。目前国家各个地区对于非法危废收集的打击力度持续加强,长期来看,工信部等部门发布多项政策指南引导电池回收规范化发展,白名单制度有望趋严,电池回收行业进入壁垒不断提高,小作坊有望逐步退出。 锂电回收行业现状 新能源汽车产业政策驱动+高速发展,激活千亿回收市场 2016 年以来,我国共出台20多条废旧电池相关的政策,其中《新能源汽车产业发展规划2021-2035》加快推动动力蓄电池回收利用立法,强化溯源管理,建立高效循环利用体系。 同时,随着国家“碳达峰、碳中和”刚性目标出台,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和,废旧电池闭环业务将迎来重大发展机遇。 新能源汽车产业政策驱动+高速发展,激活千亿回收市场 据中国中国汽车技术研究中心数据显示,2023年全球新能源汽车销量达到1465.3万辆,其中中国新能源汽车销量达到949.5万辆,占全球销量的64.8%,预计2025年全球新能源汽车销量将超2500万辆,其中国内将达1220万辆。 新能源汽车产业爆发式增长,引发镍钴锂等有价金属原料危机,进而推动锂电回收产业高速发展。 据SMM和中国汽车技术研究中心数据显示,2023年国内动力电池退役量达50万吨,产值过百亿元,预计2025年回收量将达78万吨,2030年近500万吨,对应经济价值近1500亿元,若同时考虑储能、消费型锂电以及残次品锂电的回收价值,则市场规模将超过2000亿元,占全球50%以上。 资本加速布局,回收产能过剩,市场无序竞争 2021年以来,多家上市公司通过新建、收并购等形式布局废旧动力电池综合利用项目,回收规划产能远远大于可回收量。 回收网点分布与新能源汽车销量省份基本一致,已公布的白名单规范的企业中,同时具备梯次利用和再生利用资质的企业有9家。 锂电回收发展现状:商业模式多样,回收渠道是核心 电池回收渠道包括整车厂、电池厂、汽车拆解企业、梯次利用商、贸易商等,回收渠道种类多,且废旧电池配方、形状各异,如何建立稳定的电池回收渠道至关重要。现阶段3C电池报废较多, 预计未来动力和储能电池将是主要来源 ,电池回收企业应与整车厂、电池广、汽车后市场服务商、互联网企业共同探索合作模式。 第三方回收企业模式应用较为广泛。 第三方电池回收企业在电池回收的技术和工艺上具备较强的优势,但需要自主搭建回收网络,通过与整车厂商、电池厂商达成合作等方式建立稳定的电池回收渠道。 锂电回收发展现状:处于行业初期,各个环节都存在部分不规范现象 电池回收: 目前主要以电池厂废料招标为主,车企少量供应验证车报废电池,以及各类废电池打碎的电池料。 分类/处理: 筛分具有梯级价值的电池,几乎没有正规化展开。 取而代之的现状是小作坊的不合规直接破碎。 贸易物流: 动力电池作为交通部第九类危险品运输,应当 具备危废处理专门资质 ,成本约为2-3倍,但并未得到执行。 现状是破碎后的电池料成为流通的主要产品。 梯次利用: 拆解Pack分容后重新组装Pack。 现状是经济性仍存在一定问题,循环寿命不达标,电池性能与安全存在隐患等。 目前行业政策要求在电池一致性管理技术取得关键突破前,原则上不得新建大型动力电池梯次利用储能项目。 拆解破碎: 手工拆解Pack,机械破碎,环保压力大成本较高。 现状是正规环节谁也不想做,放任小作坊处理。 再生冶炼: 最为成熟,随着锂钴价格较高,经济性明显。 但具有地域性,需要通过运输集中如格林美模式。 锂电池回收技术路线 锂电回收目前面临的挑战:退役电池流向小作坊,带来污染和浪费问题 目前动力电池回收领域,存在着小作坊猖獗的现象。这些小作坊主要是非法拆车厂、非法电池倒卖商、非法电池处理商。它们由于不需要进行环保成本和运营成本的投入,在回收价格上有极大的优势,通常会进行高价回收,挤压正规渠道的利润空间和市场份额。 目前国家各个地区对于非法危废收集的打击力度持续加强,长期来看,工信部等部门发布多项政策指南引导电池回收规范化发展,白名单制度有望趋严,电池回收行业进入壁垒不断提高,小作坊有望逐步退出。 未来发展模式:预计将以属地化处理后,再集中再生为主 由于汽车厂商和动力电池企业具有渠道端的优势,能够成为废旧电池来源的最前端入口者,所以下游的再生利用和梯次利用企业都与上游车厂和电池企业合作。 动力电池属地无害化处置后,电池料符合物流要求, 拓展了覆盖区域半径;电池料杂质更少,可为冶炼企业减少废渣和成本,创造更多的价值;拆解废品如金属等可就地处理获取利润,减少运输成本和湿法成本。 动力电池回收企业的核心竞争力

  • 磷酸铁锂电池需求持续增长 退役电池亟待回收【SMM新能源峰会】

    在由SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 - 锂电回收论坛 上, 中国科学院过程工程研究所青年研究员 张盈介绍了“退役磷酸铁锂电池高值回用技术”的相关话题。她表示,双碳战略为磷酸铁锂电池发展提供了重大发展机遇,市场需求持续增长;退役磷酸铁锂电池兼具资源和环境属性,是重要的城市矿产,亟待回收;磷酸铁锂回收主要有三类技术:先提锂、后提锂、一步法,技术各具特色,目前先提锂技术先行一步。 磷酸铁锂电池市场需求分析 全球气候快速变暖是人类面临的最大挑战之一,为此,全球的应对措施是碳中和,到2050年实现碳中和是全球最为最紧迫的任务。 我国新能源汽车快速发展 2015年,中国新能源汽车产量开始放量;2023年,销量达到950万辆,年增长率37.9%。 新能源产业发展前景巨大 2021.3,总书记提出构建以新能源为主体的新型电力系统、 退役电池回收技术研究现状 磷酸铁锂电池退役量面临爆发式增长 据中商产业研究院数据,2022年退役电池数量在20万吨左右,预计到2025年该数值或将达到174万吨上下,2030年达380万吨上下。 当电池容量衰减到初始容量的80%左右,电池将退役;亟待回收处理的电池主要为磷酸铁锂电池,占比达60%以上。 退役磷酸铁锂电池是重要的城市矿产 集流体和正极材料极具回收价值 我国废旧LFP电池利用的主流技术与问题 退役磷酸铁锂电池回收技术思路 磷酸铁锂制备技术现状 液相法(德方纳米):高倍率、低温性能好,压实密度低; 固相法:工艺/设备简单、过程可控性好,产品质量稳定。 固相法是磷酸铁锂主要制备方法 生产厂家包括安达科技、裕能、贝特瑞、万润、天赐等。 化学法回收废旧电池的总体思路 电池黑粉制电池级材料进展 杂质种类多、形态复杂、多物相夹杂 杂质来源: Al, Cu:来源于铝箔、铜箔,为单独物相; Ni, Co, Mn:来源于混入的三元电池;Ti、Zr等为掺杂元素; F:来源于电解质LiPF6及粘结剂PVDF; C:来源于负极石墨及导电剂炭黑。 选择性提锂铁磷渣杂质多、组成复杂 含来自于集流体、三元材料、正极材料掺杂物质等多元杂质;铁磷渣主要物相为磷酸铁和石墨,因黏结剂粘结作用粒度分布宽。 提锂渣制磷酸铁技术路线 技术挑战:铁磷渣高效溶解和磷酸铁制备过程中杂质行为调控 杂质在二水磷酸铁中掺杂的DFT模拟 建立了铁磷渣酸浸液“双酸法”制备电池级磷酸铁新技术 结语与展望 双碳战略为磷酸铁锂电池发展提供了重大发展机遇,市场需求持续增长; 退役磷酸铁锂电池兼具资源和环境属性,是重要的城市矿产,亟待回收; 磷酸铁锂回收主要有三类技术:先提锂、后提锂、一步法,技术各具特色,目前先提锂技术先行一步; 团队聚焦磷酸铁制备技术研发,基于磷酸铁相转规律,建立提锂渣/铁磷溶液双酸法制备电池级磷酸铁新技术,正在推进万吨级规模产业化。

  • 我国废旧锂电池回收水平有待提高 详解废旧锂电池修复再生及回收再利用【SMM新能源峰会】

    在由SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 - 锂电回收论坛 上, 哈尔滨工业大学教授 戴长松讲述了“废旧锂离子电池修复再生及回收再利用”的话题。他表示,我国废旧锂离子电池处理处置发展中存在理念落后、废旧锂离子电池回收技术水平有待提高,以及电池制造者、销售商和使用者的环境保护的积极性不高的问题。提及如何加强对废旧锂离子电池处理处置行业污染防治的建议,他表示,要加大政策引导,实现锂电池处理处置的产业化和规模化发展;建立科学的环境监管体系,健全锂离子电池行业标准;加强科研开发,提高锂电池生产和处理处置。 回收技术现状 目的意义 新能源汽车所用的锂离子电池是理想的动力源,特别是在EV、HEV中,但是也会造成能源危机和环境污染。 根据2023年到2024电池行业年度报告数据显示,预计到2033年,锂电池的需求量将以每年15%的复合年增长率增长五倍,这一趋势将直接推动对电池金属材料的需求增长。 随着电气化和电池生产的激增,对电池金属的需求预计将不断上升。短期内,回收利用可以帮助满足这部分需求,为那些原生金属产量低的地区提供边际的供应安全。长期来看,回收将在满足市场需求方面发挥关键作用。 因此,在资源价值和环保危害驱动下,废旧电池回收势在必行。 电动车发展技术路线图对回收的要求 18所肖成伟研究员提供 行业的一个短板 已经实用化的废旧锂离子电池回收工艺过程中,鲜少提及含量较少且在循环过程中有消耗的电解液的变化与处理,大多数只考虑了有价金属的回收处理,对锂离子电池中环境影响危害最大的电解液的研究及合理处置相对薄弱;另一方面,随着电解液的价格走高,如果可以从里面提取出电解质锂盐将具有良好的经济价值。 创新技术成果 1. 锂离子电池电解液分离及回收 电解液萃取工艺 利用超临界CO2技术,一体化完成电解液的无害化和正极材料剥离,无二次污染物排放,做到真正意义上的“绿色回收”。避免了火法工艺能源消耗大,锂损失严重,有机物破坏,空气污染物二次处理等问题,湿法工艺采用有机溶剂萃取回收有有机溶剂残留。 电解液萃取工艺优化 锂离子电池电解液分离及回收 通过实验得出结论:不同压力下,跨临界CO 2 电解液萃取效率随时间的变化规律;不同温度下,跨临界CO 2 电解液萃取效率随时间的变化规律。 通过对超/跨临界对电解液回收效率的对比来看,在操作条件更温和的跨临界条件下,萃取效果较超临界条件显著提高;各因素的主效应关系为压力>温度>萃取时间。 电解液和粘结剂去除技术 甲醇能使DMC和EMC的萃取效率提高15%,但是由于醇羟基的活泼氢与锂盐发生分解反应;PC夹带剂(碳酸丙烯酯) 对萃取效率增加效果较好,电解液去除率可达90%左右。 2. 三元正极材料直接修复再生技术 团队突破了传统三元材料回收技术的污染高、附加值低的缺陷,发明了三元正极材料直接修复再生技术。 研究成果可应用于储能等领域,在废旧三元正极材料回收再利用领域有潜在市场。 修复后的材料放电比容量、循环性能和倍率性能可达到商用新材料水平。 通过修复前后NCM 的高分辨率XRD 图谱和XRD Rietveld 精修结果对比来看: NCM-S:晶胞体积增大,层状结构的有序性被破坏,Li/Ni混合较大(9.79%); 修复后材料的晶胞参数更接近于新材料,表明晶体结构得到了修复 NCM-S :9.79%;NCM-MA-R:0.634% 修复后材料晶体结构和Li/Ni混排的有序恢复。 提出基于机械化学活化的高温固相修复技术,对多尺度和多形式的降解行为实现综合处理。 通过修复前后NCM材料的TEM 图像来看,NCM-S:表面有2 nm的杂质层,d=0.207nm,可能循环过程中形成的Li2CO3层或者LiF层,内部检测到尖晶石相;此外,晶粒内存在属于R-3m的层状相;NCM-MA-R表面更加规整光滑,结构良好,呈现清晰的层状分布; 高温固相修复技术可以恢复无序的晶相结构。 NCM-N中检测到的Li2CO3推测为合成过程中的残留物;失效材料中检测到了比例较高的Li2CO3 和LiF , 同时还有非活性物质NiO的出现,都是造成材料失效的主要原因: 修复后两种材料中几乎全部的NiO都被去除;表面的Li2CO3和LiF明显减少; 形成F浓度梯度分布,表面存在氟掺杂; 表明修复策略在杂质相的去除和转化中起着至关重要的作用。 小结: 提出了多晶三元正极材料的固相修复策略,以直接再生降解的NCM材料; 修复技术对颗粒形态的重建、化学成分和晶体结构的恢复,以及失效材料中杂质相的有利转化都有诱导和促进作用; 受益于对多尺度和多形式降解行为的综合处理,修复后的材料在0.1C时表现出176.8 mAh g-1的容量,这与相应的商业材料(172.8 mAh g-1)相当。恢复后的阴极的容量令人满意,证明它是一种有效的直接翻新策略。 3. 锂离子电池磷酸铁锂固相修复技术 团队,突破了磷酸铁锂高经济效益回收再利用的瓶颈,发明了一种失效磷酸铁锂固相修复的技术;研究成果在锂离子电池回收领域有潜在市场;申请专利,电化学性能修复效果明显。 失效分析:对三种不同失效电池正极材料进行; 失效分析:晶型、表面化学成分。 固相修复:对失效靶点进行修复,在物理结构上恢复磷酸铁锂结构的脱嵌锂离子能力与活性锂含量。 固相修复:电化学性能得到恢复,在倍率、循环等测试的放电比容量得到提升,工作平台得到延长。 4. 废旧锂离子电池选择性回收锂 采用豆渣作为绿色还原剂。523三元正极材料来自于汽车用动力电池。 5. 后处理技术—— 采用超临界CO 2 处理对再制备三元正极材料性能的改进 后处理设计思路:通过超临界CO2处理的方法对材料表面进行改性,提高材料的电化学性能。 6. 磷酸铁锂电池回收及材料再制备技术 7. 层状动力电池正极材料混合回收技术 1)分离出来废旧锂离子电池电解液; 2)杂质离子的除去和控制; 3)前驱体的制备。 产业化技术优势 产业化推广技术 已形成了回收技术规范和技术标准的建议稿;已在骆驼集团和理士国际集团产业化应用;为政府提供政策建议报告。 撰写回收建议书一份,报给国办和中办 我国废旧锂离子电池处理处置发展中存在的问题: (1) 理念落后、废旧锂离子电池回收技术水平有待提高; (2) 电池制造者、销售商和使用者的环境保护的积极性。 加强对废旧锂离子电池处理处置行业污染防治的建议 (1) 加大政策引导,实现锂电池处理处置的产业化和规模化发展; (2) 建立科学的环境监管体系,健全锂离子电池行业标准; (3) 加强科研开发,提高锂电池生产和处理处置。 已形成四项、成套的回收再利用技术 1)废旧磷酸铁锂系动力锂离子电池的成套回收再利用技术,包括:电解液回收与分离,FePO4,Li2CO3 产出; 2) 废旧三元系动力锂离子电池的成套回收再利用技术,包括:电池正极材料修复判据和修复技术;电解液回收与分离,前驱体(NixCoyMn1-x-y) OH 2 ,Li 2 CO 3 产出; 3) 废旧三元动力锂离子电池的正极材料直接修复再生技术; 4) 废旧磷酸铁锂动力电池的正极材料直接修复再生技术。

  • 废旧光伏电池回收利用技术及政策【SMM光伏论坛】

    在由上海有色网(SMM)主办的 CLNB 2024(第九届)中国国际新能源产业博览会 —— 光伏发电系统供应链论坛 上,生态环境部固体废物与化学品管理技术中心主任许涓对废旧光伏电池回收利用技术及政策进行了介绍。 一、基本介绍 1.光伏组件的来源及数量 全球趋势:全球光伏装机容量从2010年40 GW增长到2019年580 GW,年均增长34.5% 我国趋势:到2020年年底,我国光伏组件累计装机容量达253 GW。 预测:到2030年,全球废旧光伏组件的总量将达8 Mt,到2050年,这一数字将增至78 Mt;可再生能源电力占比2025年33%→ 2050年达到86%(IEA,IRENA,BP)。 2.光伏组件的种类及结构 (1)光伏系统构成 (2)光伏组件类型:晶体硅组件(主要成分:硅、银、铝)、碲化镉组件(主要成分:碲、镉、铟、锡、银)、铜铟镓硒组件(主要成分:铜、铟、镓、硒、碲、镉)。 (3)光伏组件结构:晶体硅太阳能电池是光伏组件的核心部分。 (4)晶体硅组件构成:退役组件仍包含大量有价值材料:硅、银、铝、铜、钢、玻璃、塑料、铅、锡等。 二、回收利用技术现状 1、回收利用技术种类 (1)组件拆解 为回收和循环利用光伏组件中材料,晶硅组件回收技术分为组件拆解和组分回收两个步骤。 2、回收利用技术特点 (1)组件拆解 其对不同去除EVA的晶体硅光伏组件回收工艺方法比较进行了阐述。 (2)组分回收 传统晶硅退役组件的电池回收,主要依托选择性浸提、沉淀、萃取等方法,将电池片中贵重金属(银、铜等)分别回收。 另外,对于从组件拆解下来的完整电池片,可考虑进行电池片修复工序,使其恢复可使用的光电转换效率,再次进入光伏应用链条。 3、回收利用技术情况 (1)技术情况 (2)组件回收面临的难题 ►技术上: •回收过程中污染物的产生和处理的问题。 •前期投产的晶硅电池组件多采用含氟背板,经过焚烧会产生氟化氢等毒性气体。同时,含氟背板中碳氟化合物结构不易破坏,较长时间无法降解。 •应用潜力较大的碲化镉薄膜电池中含有剧毒重金属镉,会通过食物链积累危机人类健康。 •另外,如果回收工艺使用了化学溶剂来溶解光伏组件中的乙烯-醋酸乙烯酯共聚物(EVA),虽然可以回收高纯硅、高价值金属材料,但也会产生大量有机和无机酸、碱废液,对环境污染较严重。 EVA高温热解气化时导致的应力,通过机械破碎玻璃或激光划图+优化的升温速率可解决 完整硅片的使用成为新课题:1)电池效率提升显著、大尺寸成为方向;2)或许硅粉更有价值,但成本成为问题。 EVA有机溶剂中溶胀,需解决 根据需求,多种技术组合,实现回收目标。 3、回收利用流程 ►经济效益上: •光伏组件回收若不能产生规模效应经济效益不明显。目前,只有以PV Cycle为例的少数企业能够实现盈利。 •在欧洲电子电气废弃物(WEEE)新规章等政策的推动下,PV Cycle自成立以来占据了欧洲90%的市场份额。 •在国内,由于目前的回收规模较小,尚无专业企业开展,资源化的回收技术还处于实验室研发阶段,且多数技术能耗较高,经济性较差,导致市场发展动力不大。 ►政策上: •欧盟2012年将光伏组件列为电子废弃物进行管理,要求必须集中收集85%的废旧组件,同时80%的必须要进行再循环利用。 •国内对于光伏组件的回收方面并未出台相关政策,对于光伏组件的处置无专门的监督管理体系,对再生材料的销售也无相应政策支持,加上目前报废量并不大,多数企业处于观望阶段。 三、污染控制技术要求 1、拆卸过程污染控制要求 1.废弃光伏组件应按可行的顺序进行拆解,得到接线盒、引出线、边框和光伏层压件。 2.废弃光伏组件拆解时应保证光伏层压件的完整性。 3.不应丢弃预先取出的所有零部件。所有取出的零部件及材料应贮存在适当场所,并清楚的标识。 4.拆解场地应符合 HJ/T 181 的规定。 5.生态修复要求拆卸后的风电和光伏设备基础及附属设施应遵照主管部门要求,进行合规处理。 6.环境保护要求废风电和光伏设备的拆解、破碎宜遵循资源高值化原则,最大限度保证拆解、破碎产物的循环利用。现场应有完备的污染防治机制和处理环境污染事故的应急预案。 2、收集、贮存、运输污染控制要求 ►收集: 1.禁止将废弃组件混入生活垃圾或工业固体废物中。 2.收集商应将收集的废弃组件交给有资质的机构拆解、处理。 3.收集过程中,应设置防护措施,避免掉落、污染环境或危害人体健康。 ►运输: 1.在运输前应进行登记。 2.严禁运输过程中擅自对废弃组件采取任何形式的拆解、处理。 3.运输过程中的防护措施等应满足相关标准的要求。 4.应避免运输过程的二次破坏。 ►贮存: 1.废弃组件贮存场地应符合 GB 18599 的相关规定。 2.废弃组件应该进行分类存放,在显要位置标识其种类名称。 3、处置要求 ►一般规定: 1.处理过程中产生的废水应进行集中处理,处理后的废水宜循环再利用,排放废水应符合 GB 8978的相关规定。 2.处理过程中产生的废气应符合 GB 16297 中的规定。 3.不应随意丢弃废弃组件的任何零部件或材料。 4.不能再生利用的材料或者回收处理过程中产生的固体废物可作为一般工业固体废物贮存、处置,贮存和处置场应符合 GB 18599 的规定。 5.外观损坏,维修后发电性能未受影响的组件,经维修后可再使用,维修后组件的外观应满足 IEC 61215-1:2016 第 8 章的要求;外观未损坏,功率衰减,但仍有利用价值的组件可维修后再使用。维修后的组件安全性应符合相关现行标准要求。 4、再生利用 ►半导体材料的再生利用: 1.硅材料的回收一般用化学方法去除正背面电极、减反射膜、发射极、背面 BSF 等,以获得可回收利用的硅材料。 2.回收硅料可以用于生产硅铁合金,也可以进一步提纯制备光伏级硅料。 ►金属材料的再生利用: 1.电池中金属材料的回收提纯一般用溶剂腐蚀后再还原的方法再生。铝边框处理后可作为铝型材原料用于生产铝边框,也可用于建筑材料等其它行业。 2.金属材料再生利用时排放的废气应符合 GB 16297 的规定,废液经处理后各项污染物达到 GB 8978中的规定才能排放。 3.回收的金属材料可以作为金属冶炼提纯的原料循环利用。再生利用的金属产品应符合国家相关金属产品质量要求。 ►玻璃的再生利用: 1.完整的封装玻璃处理后,如果透光率等参数符合标准要求可以用作光伏封装玻璃,也可以作为平板玻璃在其它行业应用。 2.破碎的封装玻璃可以作为玻璃再生原料使用。再生利用的废玻璃产品应符合国家相关玻璃产品要求。 ►聚合物材料的再生利用: 1.废弃组件处理后回收的聚合物材料主要包括塑料和橡胶,应分类再生利用。 2.塑料的再生利用可参照 GB/T 30102。 3.含阻燃剂的废塑料只能适用于含阻燃剂的塑料制品原料,表面应标有符合 GB/T 16288 规定的再生利用标志。 4.不能再生利用的聚合物材料可焚烧进行能量回收。 5、管理要求 1.回收处理企业应建立记录制度。 2.拆解与处理企业有关废弃组件处理的记录、污染物排放监测记录以及其他记录应保存3年以上。 3.回收处理企业应建立废水废气处理系统,并定期监测排放的废水、废气中的污染物浓度。 4.回收处理企业应对厂界噪声定期进行监测,并符合GB 12348的要求。 5.回收处理企业应制定突发事件的处理程序,有完整的防护装备和措施,操作应遵守国家相关的职业安全卫生法规或标准。 6.新上岗操作人员应进行岗前培训,或在技术部门人员的指导下进行。 7.回收处理企业应具备相应的环保设施,并达到国家相关污染物排放控制标准。 四、政策制度导向 1、政策导向 1.习近平总书记强调,实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革,要把碳达峰、碳中和纳入生态文明建设整体布局。这标志着我国生态文明建设进入以降碳为重点战略方向的关键时期。 2.面对“双碳”战略对固体废物环境治理提出的新要求,必须以习近平新时代中国特色社会主义思想为指导,坚持与时俱进,坚持整体观念,坚持协同增效,将“双碳”战略要求贯穿于固体废物污染防治全过程,全方位推进固体废物环境治理体系改革创新。 2、商业模式探索 3、光伏组件回收政策 (1)相关政策 ► 一些政府已经开始制定组件废物管理和回收指令或指导方针,以促进有价值材料(如银、铜和铝)的回收,同时减轻有毒材料(如铅或镉)的危害。 •欧盟于2012年在其废旧电气和电子设备(WEEE)法规中增加了光伏类别,随后又对污染和材料提取提出了要求。 •美国华盛顿州明确要求光伏组件回收。 •澳大利亚开始考虑光伏产品管理计划,尚未出台明确法规。 •印度出台草案,考虑强制回收。 •日本则制定了指导方针,并正在考虑制定回收法令。 (2)相关政策——欧盟 在世界光伏市场的发展过程中,欧洲从 2012 年开始通过废弃电气和电子设备(WEEE)指令2012/19/EU,规定了光伏组件的回收,其中包括电气和电子设备废弃物的收集、回收和循环利用目标,包括光伏组件。自 2012 年起,所有欧盟成员国都已将光伏法规纳入国家法律,要求欧盟市场上的所有光伏组件制造商运营自己的回收和循环利用系统,或加入现有的生产商合规计划。 其对德国、法国以及西班牙的相关的政策进行了介绍。 3)相关政策——日本 •2004 年,日本发行了《关于太阳能电池类物品废弃处理的法律事项》,随后十几年也在陆续提出与光伏回收处理相关的方案和指导方针。 •2016 年,日本环境省公布了光伏发电设备处理方法相关的方针,方针规定,废旧光伏设备需要根据《废弃物处理法》及《建设回收法》等进行处理。 (4)相关政策——美国 •美国在各州(华盛顿除外)和全国层面均缺乏针对光伏回收的回收机构、政策、激励措施和监管机制。 •2020 年 3 月,在美国华盛顿州参众两院通过了一项法案,发布该州的光伏回收新政策,要求最终设计和执行一个综合性的光伏产品回收计划。 (5)相关政策——我国 类似欧盟的 WEEE,我国也于 2009 年 2 月25 日签发了《废弃电器电子产品回收处理管理条例》( 以下简称《管理条例》),并于 2011 年 1月 1 日起执行。 世界范围内产业化现状 技术路线众多,实现产业化运行寥寥。

  • 【直播】全球光伏及储氢市场分析 碳市场发展 全球能源变革新篇章 镁基固态储氢发展

    5月30日,SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 围绕新能源各产业,原料、材料、光伏、储能、氢能、动力电池、新能源汽车、人工智能、电池回收等领域进行广泛交流,展示最新成果。本次大会包含多个论坛,以下为 氢能产业发展高峰论坛 的文字直播。 》查看本次大会文字报道专题 》查看现场图片直播 嘉宾发言 发言主题:全球光伏和氢能储存市场分析 发言嘉宾:SMM 高级咨询顾问 郭一宽 氢能储能与可再生能源的耦合 氢能储能可有效解决弃光弃风问题,锂电储能可弥补可再生能源的不稳定性,提升整体耦合度。 废弃光资源在中国及中东的应用 中国利用可再生能源和氢储能减少太阳能浪费;中东光照资源充足,预计2030年光伏发电量将增至50GWh。 全球氢气产量概况 2023-2030年随着中东、北美等地区氢能规划的实施,预计2030年全球氢气产量将达到1.6亿吨,中国氢气贡献量将降至38%。 中东氢能规划发展路线图 预计到2030年,中东地区大部分灰氢将通过CCUS技术转化为蓝氢,蓝氢和绿氢应用于当地市场,氢气载体通过航运、管道运输出口。 》SMM:全球光储氢市场解析 2030年全球氢气产量或达1.6亿吨 发言主题:全球能源变革新篇章-绿氢、绿氨与绿醇的崛起与机遇 发言嘉宾:中国石油和化学工业联合会 特聘专家 赵军 制氢发展趋势 ▪ 电力制氢路线比重不断增加,2060年年产量可达7300万吨,将成为未来主要制氢路线。 ▪ 其他制氢路线(如精炼石脑油催化重整、其他化石、煤炭等)的比重都在逐渐减少,未来多采用与CCUS技术相结合的清洁生产方式。 用氢发展趋势 ▪ 工业、交通运输等领域将成为氢需求的重要增长点,制氨和合成燃料领域的需求将保持一定的增长态势,主要来自航运和航空需求。 ▪ 电力领域的需求相对较小且增长缓慢,而精炼领域的需求则在2030年前有所增长,但之后将保持相对稳定的水平。 》绿氢、绿氨与绿醇产业展望 交通运输等将成为氢需求重要增长点 发言主题:高性能阳极催化剂开发与展望 发言嘉宾:北京氢羿能源科技有限公司 创始人/董事长 米万良 电解水制氢市场空间和趋势 在“双碳”目标的驱动下,未来中国氢气转向绿氢生产趋势已成定局,基于可再生能源的电解水制氢技术是必然选择之一,今后10-20年占比会大幅度增加。 全球PEM电解槽发展策略 欧盟:德国提出国家氢能战略,30年/40年目标电解槽产能5/10GW,对绿氢需求巨大。同时提出可再生能源法减免绿氢的可再生能源附加费,幅度达85-100%;并提出氢全球计划,投入9亿欧元。英国氢能战略将原有至30年5GW的低碳氢产能提升至10GW/年(绿氢+蓝氢),公布9000万英镑绿氢基金。 美国:PEM电解水制氢的成本已降为当地天然气重整制氢的2倍,尤其是以“四弃”发电制氢成本已经与天然气制氢相当。美国能源部推出H2@Scale规划,支持Proton Onsite,Giner,3M公司开展涉及GW级PEM电解槽析氧催化剂、电极、低成本电极组件和放大工艺。 中国:可再生能源电力的PEM电解水制氢项目不断攀升,提出氢能中长期发展规划,将提高可再生能源制氢量等氢能相关全产业链计划。中石化提出绿氢炼化、千座加氢站计划;中石油以及中海油、国电投、三峡集团等均开展相关方面的布局。 》“双碳”目标驱动 未来我国氢气将转向绿氢生产 发言主题:碳市场发展与绿色氢基能源 发言嘉宾:上海环境能源交易所 总经理助理 沈轶 全球碳市场 ►发展现状:截至2023年1月,全球共有28个碳市场正在运行。另外有8个碳市场正在建设中,预计将在未来几年内投入运行12个司法管辖区亦开始考虑碳市场在其气候变化政策组合中可以发挥的作用。 ►按照覆盖排放量的规模来计算,中国拥有全球最大的碳市场。 ►以碳市场年度配额拍卖收入来计算,欧盟拥有全球最大的碳交易市场。 ►交易情况 2023年全球大多数地区碳价呈下跌态势,但中美碳配额价格都呈走高趋势。 欧盟:排放交易体系(EU ETS)仍然是全球最大的市场,占2023年全球碳市场总价值的87%左右。 中国:全国和试点碳市场整体交易量有所增长。 北美:碳市场的交易活动在2023年略有下降。 2023年,碳市场机制继续向新的区域扩张,埃及、日本、印度尼西亚和中国台湾地区都推出了新的计划。 ►展望 碳市场控排规模将持续增加、碳市场和碳税配合使用是未来趋势、全球碳市场衔接进程加快。 绿氢 ►在全球加快能源绿色转型的背景下,氢能产业已成为全球能源领域投资增速最快的行业之一。 ►IEA预测,随着可再生能源制氢技术的突破和成本的降低,2030年全球绿氢产量将达到2700万吨/年,2050年预计超过1亿吨/年,增长潜力巨大。 ►作为一种用途广泛的二次能源,绿氢可以在多个生产和消费环节作为替代能源进行使用,在重工业、交通、建筑、电力行业中均有不同的应用场景,其中最主要的用途包括燃料用氢、原料用氢,以及储能用氢三类。 ►中国是目前世界上最大的制氢国,年制氢产量约4000万吨。近年来绿色清洁氢能源发展持续加速。 》未来碳市场控排规模将持续增加 绿色氢基能源发展痛点解析 发言主题:天然氢勘查开发氢能绿色供应的重要途径 发言嘉宾:博士/北京天成开云能源有限公司首席科学家 卢明杰 氢能供应幵非都是绿色 目前可利用癿氢能均属亍“二次能源”,主要通过一定癿技术手段,由其它能源转化而来癿,丌仅需要能源投入,还排放二氧化碳。 根据IEA统计,2022年全球氢需求量约9500万吨,其中我国约4000万吨。 在我国约62%(约2480万吨)氢为煤制氢,19%(760万吨)为天然气制氢获得。即使全部采用了碳捕获技术( CCS ),每年因此两项排放的二氧化碳量也达5720万吨。因此,要实现氢能产业真正癿绿色发展,必须解决氢能源癿绿色供应问题。 天然氢富集的有利地质环境 已有的勘探成果和事实说明,在一定的地质条件下,天然氢是有可能成藏,并被开发利用的。 全球范围内,高含量天然氢均发现在沉积盆地内。在大陆地区,主要是发育在以下构造环境的沉积盆地: 一是板块碰撞带(俯冲带)附近及其周缘的盆地。在板块碰撞带和俯冲带附近,作为残留洋壳的蛇绿岩可以通过蛇纹石化作用形成高含量氢气。 二是与大陆裂谷系统有关的断陷盆地,这些盆地的周边常发育一些超壳的深大断裂,并常伴有蛇绿岩的分布,可将深部氢气运移到浅部富集。 》天然氢勘查开发是氢能绿色供应的重要途径 发言主题:蓝氢到绿氢的转型之路 发言嘉宾:旭阳氢能研究所 电解水制氢负责人 张芳华 市场需求及发展趋势 市场背景:全球氢能市场前景可观,电解水制氢存在巨大增量市场。 近年来,全球氢能市场呈现逐年增长的趋势;我国已成为最大氢气生产国,2021年,我国氢能产量达3342万吨,全球占比超过1/3;目前,氢气制氢仍以灰氢为主,2021年,灰氢占比超80%,电解水制氢不足1%。 我国氢气发展现状 》全球氢能市场前景可观 电解水制氢增量市场巨大 发言主题:氢燃料电池氧还原催化剂研究 发言嘉宾:哈尔滨工业大学 教授 王振波 燃料电池简介 根据中咨氢能中心初步统计,2023年1-12月全球(中国,日韩、美国、欧洲等主要市场)燃料电池汽车销量约1.46万辆,同比下降约21.1%;总保有量达到约81915辆;截至2023年底,全球在营加氢站数量达到1100座,同比增长51%。 2023年氢燃料电池汽车产销量对比: 2023年我国氢燃料电池汽车产销数据分别为5631辆和5791辆,同比分别增长55.2%和72.0%(2022年产销数据为3628辆和3367辆)。 结论与展望 1、贵金属Pt/C国产化进程加速; 2、随着处理温度提高FeOx 转化为FeN4, FeN4 进而转化为活性位点;在700度热处理是Fe-N-C催化剂性能最佳; 3、可以采用助剂提高Fe-N-C催化剂活性位点密度; 4、明确了Mn-N-C催化剂中Mn-N4是催化活性中心;稳定性明显提高; 5、可以通过双金属活性中心提高催化剂的活性; 6、PEMFC是未来发展方向;由于Pt的成本和储量原因,未来非贵金属催化剂是研发重点,但难度较大。 》2025年我国氢燃料电池汽车保有量或将达10万辆左右 发言主题:绿氢行业水电解制氢装备与技术分析 发言嘉宾:中船(邯郸)派瑞氢能科技有限公司 市场总监 李海鹏 (应嘉宾要求发言内容不对外) 发言主题:新一代电解水制氢核心材料的研究 发言嘉宾:碳能科技(北京)有限公司 销售总监 李向军 (应嘉宾要求发言内容不对外) 》【新能源峰会直播】全球新能源矿产需求及展望 2030年全球电池供应链行业增长路径

  • 【直播】钠电全产业链发展方向 | 磷酸锰铁锂新进展 | 电动二轮车电池充电安全探讨

    5月30日,SMM主办的 CLNB 2024(第九届)中国国际新能源产业博览会 围绕新能源各产业,原料、材料、光伏、储能、氢能、动力电池、新能源汽车、人工智能、电池回收等领域进行广泛交流,展示最新成果。本次大会包含多个论坛,以下为 电动车绿色出行及电池应用高峰论坛 的文字直播。 》点击观看本次论坛视频直播 》查看本次大会文字报道专题 》查看现场图片直播 圆桌对话 主题:不同视角下 钠电全产业链发展方向 主持人: SMM VP 胡健 嘉宾: 广东省自行车电动车行业协会 副会长/深圳市电动自行车产业促进会 执行会长 杨华 湖州英钠新能源材料有限公司 王亚平 董事长 山东华纳新能源有限公司 李稚殷 副总裁 无锡盘古新能源有限责任公司 胡明祥 董事长 珠海市赛纬电子材料股份有限公司 研究院院长 毛冲 》点击观看现场视频 嘉宾发言 发言主题:钠电和锂电在储能应用的经济性对比 发言嘉宾:SMM 高级咨询顾问 夏文静 储能技术类别介绍 储能技术分类中,电化学储能技术因其不受区位限制(相比抽水),且技术成熟度高在储能市场上得到快速发展;氢储因其清洁低碳、存储时间长且可进行长距离运输方案受到市场广泛关注。 SMM评述: ►储能领域对电芯能量密度并非特别敏感,电芯的技术竞争核心在于系统寿命及系统效率。 ►当前储能应用大多以一充一放为主,逐渐转向两充两放,考虑充电时长等问题,预计发电侧一充一放居多;电网、工商业应用场景等将逐渐走向两充两放。 -锂电-磷酸铁锂系统寿命及系统效率表现均高于钠电-层氧及钠电-聚阴离子; -钠电-层氧循环最高达5000次,适用于一充一放3-4年电站寿命设计及两充两放5-8年电站设计,技术性能长期不具优势; -钠电-聚阴伴随循环提升至10,000周左右,整体电站寿命提升,叠加系统效率持续提升,或将对铁锂市场造成冲击(如一充一放存在10年向15年转化,聚阴可满足要求)。 成本结构对比(2023-2027E) 因出货规模及技术成熟度的限制,当前市场中的钠电池成本价高于磷酸铁锂电池30%左右,但随市场需求增加、规模效应显现,预计2027年钠电池主流路线成本将接近磷酸铁锂成本。 度电成本对比(2023-2027E) 储能场景下,聚阴离子正极路线的钠电池因其具备高循环寿命的特点,在材料改善成熟后,成本有望下降约70%,初具度电竞争优势;层氧虽成本也可降50%以上,但因其材料特性,更适用于动力市场。 》SMM:锂电池VS钠电池储能应用前景分析 发言主题:磷酸铁锂材料产业发展趋势 发言嘉宾:宜宾天原锂电新材有限公司 董事长 颜华 “双碳”背景下 电动化转型势不可挡 电化学储能将成为新浪潮 ►新能源汽车是交通低碳转型的重要路径。 ►新能源汽车成为全球汽车产业链转型主要方向和促进世界经济持续增长的重要引擎。 ►储能是“碳中和”背景下能源转型的助推器,是解决风能、光伏发电与用电之间的矛盾,储能未来可期。 ►电化学储能引领储能行业变革,其储能效率最高,应用场景广,将成为主流技术。 》磷酸铁锂产业向资源及能源富集地区转移是大势所趋 发言主题:可信赖的颇尔工业过滤和分离解决方案 发言嘉宾:颇尔(中国)有限公司 技术专家 王永振 DFL-盐湖提锂 ►案例 •DFL用于保护超滤、纳滤组件; •100m3/h设计流量。 ►运行结果 •出口浊度0.18NTU,明显优于竞品7.81NTU; •工艺要求低于1NTU; •产水通量高于竞品; •长时间连续稳定运行。 ►价值 •延长下游陶瓷膜清洗周期; •确保产品品质达标; •减少客户运行成本。 》颇尔公司:锂电池行业重要产品及全行业过滤解决方案 发言主题:高比能钠电池性能报告 发言嘉宾:天能控股集团有限公司 新型电池副总经理 邬财浩 钠电是中国新能源产业健康有序发展关键 钠电发展自主安全可控: 国内新能源产业蓬勃发展带动锂电产业高歌猛进,但锂电池核心材料锂资源、钴资源、镍资源等严重依赖进口,供应链安全和市场价格波动频发,发展钠离子电池是保障中国锂电和新能源产业健康有序发展关键计划。 钠电池生产工艺与锂电池相似 生产工艺方面: 钠离子电池生产工艺同锂离子电池类似,主要包括极片制造(正负极搅拌制浆料-烘干-涂布等)和电池装配(辊压-模切-卷绕/叠片-入壳-封装-化成-分容分选等),主要区别在于钠离子电池可采用铝箔作为负极集流体,因此正、负极片可采用相同的铝极耳,极耳焊接等相关工序可以更加简化。因此,锂离子电池现有的电池组装生产线稍加修改即可用来生产钠离子电池,发展钠离子电池的重置成本低。 》钠电面临挑战及应对策略 发言主题:可充电式钠电池电极材料进展 发言嘉宾:无锡钠科能源科技有限公司 总经理 乔少华 行业近况 ►钠电池标准开始逐渐完善; ►储能、工程机械、电动两轮车、电动汽车等应用端实现了一定的出货量; ►2023年上半年聚焦在层状氧化物,下半年聚阴离子材料开始发力和扩张; ►布局企业多,规模量产少:正极材料企业有近80家,年产能超过2千吨的不超过10家; ►共线产能多,有效产能少,实际利用率低; ►材料企业战略趋同,产品同质化竞争加剧。 》差异化钠电正极材料开发与产业化实践 发言主题:扩大电池生产-欧洲超级工厂的经验分享 发言嘉宾:博士/Battery Associates 创始人兼主席 Simon Engelke 》扩大电池生产:欧洲超级工厂的经验分享 发言主题:钠离子电池在电动车行业的应用前景 发言嘉宾:无锡盘古新能源有限责任公司 董事长 胡明祥 电动自行车行业情况 ►格局:各国出台鼓励措施,关注环保,国内钻研模式,关注安全。 欧洲市场倾向于电助力自行车;美国市场倾向于大型电摩;东南亚倾向于踏骑车型;西班牙、法国等国对新能源摩托车补贴力度较大;越南、印尼等国家人口基数大需求旺盛。多国政府补贴和税收减免助力e-bike发展。 国内,雅迪、爱玛、台铃、新日、九号等品牌布局海外,从代工、贴牌,到品牌出海模式转变,并逐步进行海外工厂落地。传统自行车和电动车制造商均在借力e-bike顺风车发展。 ►趋势:新国标5年期满,行业加速重视多元智能和用户需求。 关注消费者需求,电动自行车逐步从配置层面走向差异化和多元化,如电池安全性、续航、智能系统、充电/换电系统等。 关注智能化功能,结合消费者需求,将电动自行车使用情况、车辆定位等功能上线,形成交互高体验。 出海战略成为重点方向,部分头部品牌已开始布局海外市场,建设生产基地和销售网络,抢占国际市场份额。 钠离子电池发展优势 安全性高: ◼ 钠离子电池内阻高,电池短路电路电流更低,瞬间发热更少。 ◼ 锂的标准电极电位更负,在水溶液里表现更为比钠更容易失电子,因而钠离子电池具有更高的稳定性。 ◼ 钠的活性高,在一定条件下钠枝晶比锂枝晶更易发生自消融,进而避免了电池短路自燃。 ◼ 钠离子电池在热失控过程中易钝化失活,在过充、过放、挤压、针刺等安全测试中均不起火爆炸,热稳定性远超国家强标安全要求。 ◼ 锂离子电池在过放电的情况下,金属态的铜会沉积在阴极上形成金属枝晶铜,金属枝晶铜的生长会造成内部短路并造成严重的热危害。而钠离子电池负极允许使用铝箔作为集流体,使其能够安全的放电至0V,而不会出现Al 溶解等任何问题。 》钠离子电池在电动自行车的应用前景 发言主题:特殊介质的平稳输送与精准投加 发言嘉宾:英格索兰 PST亚太区市场总监 邱广 》能源领域投资趋势及锂电行业应用简析 发言主题:电动二轮车电池充电技术与安全探讨 发言嘉宾:国家高端储能产品质量检验检测中心 无锡市检验检测认证研究院 薛宇 分析典型的充电事故产生原因: 第一,由于充电器从恒流充电转为恒压充电的条件为电池端电压(一般设计为58V)达到一定数值。如48V电池组,铅酸电池是由4块12V电池,每块电池由6个2V的单格组成,锂离子电池由12串(三元电池)、13串(铁锂电池)组成,三元电池的单格电压为3.7V、铁锂电池的单格电压为3.2V,单格电池电压在整个充电过程中,从低电位充到高电位。 但是充电时,如果发生电池单格损坏、短路等原因,2V/3.2V/3.7V单格电压降为0或者很低的电压,那么由每个单元格串联累计的电压值就可能永远达不到转换电压(恒流-恒压),充电器判断一直未达到转换电压,就一直保持使用大电流对电池组进行直流恒流充电。 导致电池组发生过充,轻则引起失水鼓涨、重则发生燃烧等事故。锂离子电池还有一道电池的BMS保护,如果BMS与电池不匹配或者质量较差,或者BMS设置的保护电压值电流值过高,则极易影响锂离子单体电池危险,由于锂离子电池比较活跃,内阻比较小,就有可能出现爆燃事故。 第二,我国南北纬度跨度大,一年中冬天和夏天的温度也相差很大,即使正常充电,采用同样的充电程序、电流、电压、转灯电压等参数设计,也容易造成冬天充电充不满,夏天电池充鼓涨的情况。 第三,由于充电器质量问题,发生内部短路或者其他损坏时,往往发生最直接的现象是,输出电压突然升高,最大57V的输出电压,突然阶跃至100V以上,直接造成被充电电池的短路,造成充电事故。 同时,研究结果表明,锂离子电池能量密度每增加 1 kWh/kg,热失控的触发温度将降低0.42℃。也就是说高能量密度电池相比普通电池更容易发生热失控。热失控是由于电池发热与散热之间的平衡失控所引起的。主要由电池组成的材料在高温下的分解和相互反应导致。 充电技术的提升 针对电池夏天充电易过充鼓涨、冬天充不饱的问题,根据电池的电化学特性,铅酸电池Vt=2.46-0.003×(T-25) (其中:Vt是单体充电电压(单位:V)、T是充电环境温度(单位:℃),以25℃为基准温度),简单说,就是随着环境温度升高,充电电压略有下降,每个电池单格每摄氏度减少0.003V充电电压。 充电时增加一个温度传感器、或者通过数据线,把充电器与锂离子电池组的BMS相连,采集温度信号,也可以把上述公式做成一张温度-电压曲线图,存储在芯片里,随时调用,需要说明的是,由于各电池生产企业的配方不同,锂电池的种类不同(三元、锰酸锂、铁锂),上述的温度-电压曲线图需要具体配对电池企业的技术参数要求。 同时,也可以采集充电时电池组表面的温度值,发现温度过高及时通知充电器停止充电。另外,参照其他电源适配器(手机充电器、笔记本电脑充电器)的技术要求,以及出口电动自行车充电器的技术要求,引入了电磁兼容的技术要求,设计中考虑发射和抗扰度限值和要求。 第一,优化充电器不对其他电器和人体产生影响的发射项目,主要考虑电源端子骚扰电压、骚扰功率、谐波电流、电压变化、电压波动和闪烁。 第二,优化充电器抗干扰能力的项目,主要考虑电快速瞬变、注入电流、射频电磁场、浪涌、电压暂降和短时中断。通过这些EMC项目的设计,增加充电器的工作可靠性、稳定性。 》专家分享:电动二轮车电池充电技术与安全探讨 发言主题:石墨烯电池研究现状与展望 发言嘉宾:超威电源集团有限公司 研究院副院长 黄伟国 循环充放电时海绵铅比表面收缩产生大量的空隙使得不可逆硫酸盐化加剧 降低循环可逆性 • 负极海绵状铅作为活性物质,在反复充放电过程中,在比表面能的作用下,比表面会不断收缩,这是一个不可逆的过程。 • 比表面收缩后极板的孔径会变大,更有利于形成更加粗大的硫酸铅晶体,导致不可逆过程加剧。 解决负极硫酸盐化的途径: ➢ 采用表面活性剂(木质素、腐殖酸)抑制活性物质的表面积收缩! ➢ 采用硫酸钡晶核细化硫酸铅颗粒! ➢ 添加炭黑、石墨等增加导电性!“称为抗膨胀剂!” 传统缓解不可逆硫酸盐化的主要途径:碳材料——具有双电层电容特性的活性炭——铅-碳电池、超级电池 作用: (1)活性炭有高的比表面积,有比较高的双电层电容,可以与正极二氧化铅形成非对称超级电容器,高倍率性能好; (2)Pavlov研究表明,在充过程中,铅枝晶会在活性炭表面生长,并与海绵铅形成一个整理骨架结构,这有利于双电层电容的充放电进行。 》石墨烯电池研究现状与展望 发言主题:铅酸电池、锂电池、钠电池在电动车上的应用及未来发展 发言嘉宾:江苏新日电动车股份有限公司 副总经理 雷宝荣 铅酸电池、锂电池、钠电池在电动两轮车上的应用 目前电动二、三轮车仍然以铅酸电池为主,锂电池、钠电池的渗透率逐渐提升。 中国是全球最大的电动两轮车、三轮车市场,市占率约90%。与欧美不同的是,中国电动两轮车主要用于代步,由于中国城乡建设的实际状况、电动车作为普通老百姓出行的交通工具、加之中国的城乡道路交通状况、电动车成为几亿普通人主要的中短途代步工具,随中国城镇化率的进程在近些年较快的发展,电动车行业也随着高速发展、截止2023年全国保有量约4.2亿辆,2023年产量达到5560万辆。 自从2019年开始实施电动自行车新国标以来、超标电动车大量存在、政府为了逐步淘汰超标电动车、各地出台了相关政策、加速推动电动两轮车的升级换代、由于近年来电动车的火灾事故大幅增加、国家相关管理部门于2024年推出GB17761标准修改工作、将针对2018版以前的电动车进行淘汰更换、各地存量的超标电动车(保有量4.2亿,90%需要淘汰替换)均需要换成符合2024版的新国标电动车,预计2024-2026年将有2.5-3亿辆的市场存量超标电动车需要更换,近几年电动车行业的产能一直在5400-5600万之间、这将给电动车行业带来巨大的机会、带动电动车整车、电池等相关行业的高速增长。 电动二轮车、三轮车铅酸蓄电池的发展趋势 目前中国的电动车产销量一直处于全球领先地位、2023年达到5560万台、保有量更是达到4.2亿,巨大的电动车存量替换是目前电动两轮车用电池最主要的市场,铅酸电池2年需要替换一次,测算年铅酸换电需求约为200Gwh,铅酸总需求约为300Gwh,目前保有量中绝大多数电动二轮车、三轮车、低速四轮车车型均使用铅酸电池,中短期时间内仍有很大的下游需求。 2023年电动三轮车的产销量达到800万左右、销售额近700亿、三轮车使用的基本是是铅酸蓄电池、铅酸蓄电池2年的更换周期、也造成巨大的铅酸蓄电池需求、预计2030年电动三轮车市场 将达到1200万台、销售额达到1500亿左右,电动三轮车用铅酸蓄电池占电动三轮车价格的40%,其市场规模将达到600亿,因此未来几年由于电动车的品种分划、电动两轮车、电动三轮车、低速四轮车的铅酸蓄电池市场需求将达到一个非常巨大的市场。 》铅酸、锂、钠电池在电动车上应用及未来展望 发言主题:固态电池趋势与战略 发言嘉宾:Blue Solutions 业务发展与计划总监 Bekir Mercan 锂离子电池并不符合市场的主要需求 锂离子电池的局限性: 范围/高能量密度、安全性、老化、快速充电能力。 解决方案: 固态(市场上最受期待的技术)、钠离子(低能量密度选项)、硫磺等。 固态电池将解决核心OEM要求 固态电池(SSB)可以彻底颠覆电动汽车市场,提供高自主性(更轻、更小的配置中能量更多),以及在恶劣条件下的高耐受性。但锂离子电池现在已经很成熟,性能稳定,且拥有制造经验。 》2035年固态电池市场份额占比有望达12%-15% 发言主题:低成本生物质基钠电硬炭负极材料开发及产业化应用 发言嘉宾:湖南钠能时代科技发展有限公司/中南大学博士副教授 张磊 (应嘉宾要求发言内容不对外) 发言主题:钠电硬碳最优生物质原料的筛选 发言嘉宾:湖州英钠新能源材料有限公司 董事长 王亚平 (应嘉宾要求发言内容不对外) 发言主题:磷酸锰铁锂新进展 发言嘉宾:星恒电源股份有限公司 研究院院长 王正伟 (应嘉宾要求发言内容不对外) 》【新能源峰会直播】全球新能源矿产需求及展望 2030年全球电池供应链行业增长路径

  • 大咖分享:n型光伏技术发展与趋势展望【SMM光伏论坛】

    在由上海有色网(SMM)主办的 CLNB 2024(第九届)中国国际新能源产业博览会 —— 光伏发电系统供应链论坛 上,上海交通大学太阳能研究所所长沈文忠分享了n型光伏技术发展与趋势展望。 PERC太阳电池发展及现状 PERC电池简介 PERC电池技术在常规Al BSF的基础上加入背面钝化层并通过激光开槽实现金属化接触,钝化层显著降低了背面的复合,同时通过调节背面结构,实现背面长波端的增长;PERC+结构由铝栅线替代全铝背场,独特的局域铝背场,实现了双面发电,双面率为~70%。 从2015年正式量产,通过全产业链的努力,包括设备、辅材、电池厂商等,PERC技术发展迅猛,并迅速占领市场成为主流。 PERC电池的发展历程 PERC 电池受益于其强大的性能与成本优势,在主流市场上占据着 80% 以上的份额;抓住 PERC 电池发展良机的企业一跃成为上一轮行业洗牌( Al-BSF 、多晶)后的龙头企业。 PERC电池的技术发展历程及现状 膜层与金属化的优化:包括正面的膜层优化,提高光学吸收;降低栅线宽度,减少光的遮挡,优化浆料体系,改善金属与硅基的接触,引入MBB技术,降低单耗等等; 双面技术的推广:将背面全铝背场改为铝栅线,双面收光,双面发电,综合发电提高10%-30%; 选择性发射极技术叠加:通过金属化区域重掺杂,非接触区域轻掺杂,兼顾接触与钝化; 电池衰减问题的解决:前期通过光/电注入改善B-O造成的衰减,后期直接采用掺Ga硅片显著改善。 除了以上所述的部分,还有许多其它工艺细节上的优化,包括有新型清洗添加剂,正面发射极的优化,碱抛光技术等等,但受限于电池结构,电池端的提效越来越有限,量产极限效率在 23.5%-23.8% 。 2023 年市场占比超过 70% ,但 2024 年快速淘汰,占比将小于 20% 。 其还对量产PERC的功率损失分析进行了阐述。 TOPCon太阳电池技术及发展 高效钝化接触的基本原理 n-TOPCon电池技术 FraunhoferISE提出隧穿氧化钝化接触(TunnelOxidePassivatedContacts,TOPCon)概念。 TOPCon结构与PERC产线兼容性好,可承受高温过程(~900oC),具有较好的产业化前景,且双面率高(~85%)。2024年PERC升级TOPCon是一大趋势。 其还对电池极限效率、三种技术路线的工艺流程、n-TOPCon制造过程及扩产、n-TOPCon技术发展等进行了介绍。 为什么TOPCon电池技术会脱颖而出? 主流PERC电池打下的坚实基础;核心装备国产化已成熟;技术路线竞争促进TOPCon发展;TOPCon技术已具有高性价比;全产业链n型TOPCon新生态已形成。 目前挑战/机遇:LPCVD还是PECVD;选择性发射极(SE)、激光辅助烧结(LECO)、多晶硅层(减薄(<80nm)、掺杂、选择性)、浆料优化、双面钝化接触。 2022年发展迅猛,2023年量产平均效率在25.0%左右,成本基本与PERC持平,2-3年内入库转换效率可达26%。抓住TOPCon电池发展良机的企业成为新一轮行业洗牌(PERC、p型单晶)后的龙头企业。 其还介绍了TOPCon性能衰减:PID及UVID以及急需测试技术的发展等内容。 SHJ 太阳电池技术及发展 其介绍了2023年晶硅太阳电池技术的进展。 SHJ电池技术及发展 晶硅太阳电池终极技术:异质结技术是最高效率晶硅电池的必由之路;异质结太阳电池是迈向更高电池效率的基石。 ►2022-2024 异质结电池技术三减(银、硅、栅)一增(效) 双面微(纳)晶硅技术nc-Si:H提高带隙和电导率(提升0.5-0.6%+0.3%) 转光膜把紫外光转化为蓝光(提升功率1.5-2.0%) 无主栅 0BB 技术 + 银包铜降低银浆耗量(从18-20降到10-12mg/W) 薄片化降低硅料耗量(100-120微米) 核心是:设备降本、产业链生态发展 (1)硅片降本:允许高氧含量;(2)0BB+银包铜:极大降低银耗量,2024年发展核心;(3)低碳足迹 颗粒硅+ CCz+ SHJ 连续直拉单晶硅(CCz: Continuous Czocharlski) 低碳足迹差异化优势:1千克颗粒硅的碳足迹数值仅为27.59千克二氧化碳当量(棒状硅46.26千克二氧化碳当量)。 ( 4 )柔性晶硅异质结电池 其还对柔性晶硅异质结电池进行了介绍。 XBC太阳电池技术及发展 晶硅电池产业化技术变化趋势 高效化: 1 )电学性能钝化完善,从前表面钝化的 Al-BSF 、前后表面钝化的 PERC 到前后表面钝化 + 载流子选择性传输的 TOPCon 和 SHJ ; 2 )光学性能充分吸收太阳光,从绒面、多层减反、 M(0)BB 、背接触、宽带隙及上下光转换到叠层技术。 背接触技术是一种平台技术,可以与各种电池结合: SunPower 经典 n-IBC 25.2% (2014) ; Kaneka n-SHJ-IBC 26.7% (2017); ISFH p-POLO-IBC 26.1% (2018) ; CSEM/EPFL 钙钛矿 /n-SHJ-IBC 叠层 29.6 % (2022) ; LONGiHBC 27.30% (2024) 。 适度超前产业化策略,产业链协同是关键。 BC电池优势: 正面无栅线遮挡,电池效率高,组件美观;正面钝化优化不受电池发射极影响。 以往BC电池劣势: 与主流工艺完全不同,独家孤独的电池技术被证实是很难获得快速发展;工艺复杂,规模小,产业链配套不全,不适合低度电成本光伏技术路线。 目前BC电池机会: 适合主流技术路线:Al BSF →PERC→PERC+→PERC++ (n-TOPCon);TOPCon优异的钝化性能及高掺杂形成隧穿界面有利于非银金属化;硅片技术提升,工艺简化,激光及非银金属化工艺应用,龙头引领产业链配套全面发展。 其还介绍了分布式市场前景广阔、40+年背接触电池发展、TBC:26-27%效率背接触太阳电池量、目前产业化BC电池等内容。 N型技术融合引领下一代电池发展 n型技术融合引领下一代电池发展 xBC与SHJ结合:HBC太阳电池。 后续发展方案:THBC太阳电池(迈向27-28%量产技术 铜电镀技术:栅线细、效率高、双面率高 后续发展方案:钙钛矿/异质结叠层太阳电池(30%+量产技术) 总结 双碳目标指引下的光伏产业蓬勃生机 n 型转型驱动下的光伏技术如虎添翼 产能过剩形势下的光伏创新重中之重 》【光伏论坛直播】全球光伏行业发展机遇与挑战 工业硅、多晶硅市场展望 高效电池技术分享

微信二维码今日有色
微信二维码

微信扫一扫关注

下载app掌上有色
掌上有色

掌上有色下载

返回顶部返回顶部
publicize