所属专题

2025 SMM 全球电池技术大会

电池技术迭代迅猛,全球合作共赢已成共识。电池产业链涵盖资源、材料、制造与应用等多个环节,需各国及各领域专家协同攻坚。本次会议旨在破除技术壁垒,推动产业健康发展。

 | 进入专题>

2025 SMM 全球电池技术大会

专家分享:影响铅蓄电池寿命的因素 如何寻求改善?【SMM电池技术会】

来源:SMM

在由上海有色网信息科技股份有限公司(SMM)主办的2025SMM全球电池技术大会-主论坛上,——高级工程师柴树松围绕“改善铅酸蓄电池寿命的途径”的话题展开分享。

铅酸蓄电池广泛应用于国民经济的各个方面。对社会文明和进步起到了重要的作用。在各种电源快速发展的今天,铅酸蓄电池仍以良好的稳定性、安全性、高性价比和低成本回收利用的优点,在各方面广泛应用。

任何电池都有寿命终止的时候,铅酸电池也不例外。达到预期的寿命一般认为是正常的寿命终止,达不到预期就是有差距或有问题的电池。铅酸蓄电池的寿命仍然符合短板规律,就是寿命终止的原因是由蓄电池短板因素造成的。当然在不同条件和环境中使用的蓄电池,即使同一批次,可能短板的因素也不同。

蓄电池短板可从大量的统计分析中得出,最好的办法是用失效电池分类统计,做出柱状图,排首位的肯定是短板。

下图是一个示例,其中的主要失效原因是正极板软化。

板栅对寿命的影响及其改善

板栅是铅酸蓄电池的活性物质的载体和导电体,是铅酸蓄电池最重要的部分之一。板栅整体的均匀一致性是非常薄弱的,也是常被忽视的,又是影响寿命的主要问题。

浇铸板栅(重力浇铸、连铸)因铸造表面的粗糙性,获得非常好的界面特性,表现出优异的电传导性,是制造电池板栅较好的方法之一。但有缺点,在生产过程中经常有板栅的气孔、脆裂、耐腐蚀性差等,这些是需要改善的重点,主要从模具、工艺、合金方面改善。

除了合金成分研究改进外,重力浇铸板栅生产过程中的模具和浇铸工艺是影响板栅的重要因素,到现在仍是常常被忽视(或是难解决)的问题,总起来说就是模具温度一致性问题,最终影响产品的一致性。试验表明,改善会明显提高寿命。

这是重力浇铸板栅定模的红外温度测量的情况,可以看出一定范围内的温差是较大的。这还是经过改进后的模具,不改进的模具温差远大于这个范围(温度单位℉)。

这是动模的红外测温的情况,可以看出模面范围的温差是非常大的(温度单位℉)。

改进的方法,主要是根据板栅的结构,散热的传递方式,合理设计冷却水水道的结构及参数。

在浇铸板栅时,温度低的区域铅液冷却快,温度高的区域铅液冷却慢,先冷却的先收缩,收缩力向冷的方向拉,形成微裂纹的致命缺陷。

重力浇铸板栅的气孔、脆断等问题,除了注意模具模面温度不一致外,还要结合模具的排气结构、模具材料一并解决。图为一种改进的多排气设计的模具结构。

拉网板栅是主要用于生产汽车电池的一种板栅,因其没有侧边框,导致边框棱角刺穿隔板短路,电池失效的比例排在前列,改善的途径是提高裁切的精度,保持裁切边在筋条的交点上。

轧带带基可能存在轧制工艺的一些缺陷,较大厚度的轧制或不合理的轧制可产生基体裂纹等缺陷,是影响寿命的缺陷,采用调配轧制比例的工艺解决。

冲网板栅是快速发展的板栅制造工艺。经过一段时间的使用,发现在没有表面处理的情况下,板栅与活性物质的界面不理想,和浇铸板栅比较相差较多,因此需要表面的处理,目前有物理和化学处理方法。表面压纹、喷砂、超声波、以及碱洗处理等。

连铸连轧板栅主要用于汽车电池和中密电池的负板栅,生产形式属于铸造,有重力浇铸板栅的优点,但由于速度较快,牺牲了合金结晶所需要的时间,容易出现脆裂等问题。很少用于正板就是避免它的短板。

负极铅膏配方的改进

铅膏配方一般认为是铅酸蓄电池制造技术的核心部分,目前的配方已远不能适应寿命的要求。负极中使用的腐殖酸因杂质含量高,一直以来发达国家就不使用,国内也是越来越少;木素溶解性偏高,用不到蓄电池寿命终止,基本就溶解出来或者分解了。

在负极添加方面,国外常用的添加量是木素0.2%-0.3%;国内除了加0.2%-0.4%的木素外,还要加0.3%-0.8%的腐殖酸。添加量大了后,副作用是很大的,对电池的实用寿命没有什么益处。虽提高了一点点初期性能,可能得不偿失。

木素和腐殖酸的作用是阻止负极板放电时活性铅集聚成大颗粒,试验表明更稳定的无机材料能起到这样的“隔离”作用,如硅的小颗粒材料,碳的小颗粒材料等有一定的效果,添加无机材料大幅减少木素和腐殖酸的添加量,是一个方向。

炭在负极的应用已有几十年的历史,不是新鲜事。无定型碳结构的乙炔炭黑很轻,颗粒很小,在极板中析出很大,为了提高寿命,应选颗粒更大的炭黑,并适当增加用量。石墨类的碳,需要考虑纯度和粒径参数,添加量不宜太多。石墨烯、炭纳米管等在蓄电池中的研究较多,有一定的效果,但存在经济性问题。

硫酸钡的分散性是发挥作用的关键因素,如果分散不好,即使加的多,也没有用,反而起负作用,提高分散性可以提高蓄电池的性能。

负极结构的控制

根据电池的性能和寿命要求,可通过添加剂的作用和工艺调节控制负生极板的颗粒形态和尺寸。图为不同的添加剂和工艺形成的负极生板结构。

不同添加剂和工艺负熟极板的结构。可用不同的生产工艺和添加剂,控制形成的不同形貌和结构(熟极板)。

正极添加剂以及微观结构的改善

正极铅膏的添加剂相对较少,主要是一般材料不能经受正极较高电位的氧化,容易分解。现在常用的有铅类添加剂(4BS、红丹等)、碳类(炭黑、石墨)、硅类等。无机物类仍是有前途的正极添加剂。陶瓷材料铅酸钡作为正极添加剂有一定的作用,但工艺较复杂。钛的化合物作为正极添加剂有一些研究。

最有前途是硅的应用,因为硅材料在隔板、电解液中有广泛应用,在极板中使用,在成孔、稳定微观结构方面显现出一定的效果,并且基本没有负作用。

不同的添加剂和固化工艺配合的正生板SEM效果:

正极添加剂与制造工艺要紧密配合进行,如合膏工艺、固化工艺、化成工艺。图为一种出现问题的熟极板的SEM结构。

不同的添加剂和不同的工艺,正极熟板的结构不同,形貌和颗粒大小不同,颗粒适当增大可延长寿命。利用添加剂和工艺控制颗粒形态和尺寸是重要的途径。

铅粉的关注点

铅粉是活性物质的核心部分,以前的研究把他说成是电池性能的遗传基因,电池的性能从铅粉带过来,其实并不为过。铅粉改进较难,是因为铅粉的参数非常依赖于铅粉设备;另外,一种铅粉可能生产多种电池,一旦调整,有的电池就受影响,比如寿命增加了,可能容量降低了等。经过多年的试验,铅粉颗粒在某个范围内,粒径分布越分散,蓄电池的寿命越好。用岛津铅粉混合一部分巴顿铅粉也表现出较好的寿命。

合膏涂板的改善点

合膏是一个化学反应过程,合膏机就是一个反应釜,设置的工艺参数、操作的工艺都会影响性能。最主要的是温度的控制,偏高的合膏温度会提高寿命。

涂板是导致极板不均匀、贴膏、露筋等问题的主要过程。这些问题应该协同板栅、铅粉、合膏工艺等的改善同步改善。拉网板栅、冲网板栅很容易出现生板弯曲的问题,是影响寿命的因素。

固化是活性物质结构形成的重要过程,如同筋的发育。固化有挂片、叠片摆放等。叠片容易出现黑心片等问题。固化参数中的温湿度以及不同位置的均匀性非常重要,是固化的核心点,不同用途的电池设置相适应的固化工艺。带微正压力的固化,既节能又提高性能,有发展前景。

化成的改善

化成有电池化成和极板化成,影响寿命的问题有化成不彻底、过化成、化成不均匀等。活性物质的转换是复杂的过程,涉及到晶粒、微孔、迁移、析气等的变化,反应和结晶过程是需要条件和时间的,工艺要保证它获得足够的条件和时间。

可以在不同阶段给予大电流或小电流,控制形成晶种的多少,从而改变正板PbO2的含量,实现控制PbO2,从而达到提高寿命的目的。

高温化成是一种有前景的化成方式,国外有厂家用过,我们也试验过,值得研究。

电池设计

设计是基于基础数据的,最可靠的基础数据来源于自己的历史数据的积累。这样是最快达到目标的方法。

其途径就是基于数据设计→制造样品→找短板(测试查找最主要的影响寿命的因素)→改进设计→再找短板→再改进设计,直到符合要求。

设计需要考虑全面的因素、经济方面、安全方面、充分考虑客户的使用。

通过解剖电池,能够发现设计缺陷,并通过改进使电池的寿命得到改善。

原材料直接影响质量和寿命。

原辅材料是决定蓄电池质量重要的因素之一,使用差的材料,即使再好的工艺可能也无济于事。看一种材料。


》点击查看2025SMM全球电池技术大会专题报道

暂无简介

陈雪
微信二维码今日有色
微信二维码

微信扫一扫关注

下载app掌上有色
掌上有色

掌上有色下载

返回顶部返回顶部
publicize