历史价格会员

防止下一代锂电池短路 研究团队开发半固态电极

【防止下一代锂电池短路 研究团队开发半固态电极 】为了突破电池设计界限,在既定空间或重量中容纳越来越多的电力和能量,研究人员正在探讨一项更有前途的技术,在锂离子电池的两个电极之间采用固态电解质材料,而不是电解液。然而,这类电池一直存在一个问题,即其中一个电极上会形成金属枝晶,最终连接电解质,使电池短路......

为了突破电池设计界限,在既定空间或重量中容纳越来越多的电力和能量,研究人员正在探讨一项更有前途的技术,在锂离子电池的两个电极之间采用固态电解质材料,而不是电解液。

然而,这类电池一直存在一个问题,即其中一个电极上会形成金属枝晶,最终连接电解质,使电池短路。据外媒报道,麻省理工学院(MIT)等院校的研究人员现已找到一种防止枝晶形成的方法,有望提升这种新型高功率电池的潜力。

麻省理工学院参与此项研究的人员包括研究生Richard Park、教授Yet-Ming Chiang和 Craig Carter等人,其余研究人员分别来自德克萨斯农工大学(Texas A&M University)、布朗大学(Brown University)和卡内基梅隆大学(Carnegie Mellon University)。

固态电池兼具安全性和能量密度,因此这一技术备受关注。但研究人员Yet-Ming Chiang表示:“唯一能实现能量密度的方法是使用金属电极。”将金属电极与液体电解质耦合,可以获得良好的能量密度,但比起固态电解质,无法获得相同的安全优势。固态电池只有使用金属电极才有意义,但这类电池的开发受到枝晶生长的阻碍,枝晶体最终会填充两个电极板之间的缝隙,导致电池短路。众所周知,在快速充电的情况下,通常电流越大,枝晶形成得越快。目前,实验固态电池所能达到的电流密度,远低于商用可充电电池的需求。但研究人员认为,其发展前景良好,因为这种实验版电池可以存储的能量几乎是传统锂离子电池的两倍。

该团队采取在固态和液态之间折衷的方法来解决枝晶问题。研究人员制作半固态电极,与固态电解质材料相接触。半固态电极可以在界面上提供一种自我修复表面,而不是固态脆性表面,后者可能导致微小的裂缝,为枝晶形成埋下伏笔。

这一灵感来自实验性的高温电池,其中一或两个电极由熔融金属构成。据介绍,这种熔融金属电池能达到数百摄氏度的温度,无法用于便携式设备。但通过这项工作确实可以看出,液体界面可以实现高电流密度,而不会形成枝晶。研究人员Richard Park表示:“出发点是开发基于精心挑选的合金的电极,以便引入一种可以作为金属电极的自我修复组件的液相。”

与其说这种材料是液体,不如说它是固体,但类似于牙医用来填充龋洞的汞合金固体金属,仍然能够流动和成形。在这种情况下,它由钠和钾的混合物制成,在正常的电池工作温度下,处于一种既有固相又有液相的状态。研究小组证明,在不形成任何枝晶的情况下,该系统的运行电流可能比使用固态锂大20倍。下一步将用实际的含锂电极来复制这种性能。

在第二个版本的固态电池中,研究小组在固态锂电极和固态电解质之间引入一层非常薄的液态钠jia合金。结果表明,该方法也能克服枝晶问题,为进一步研究提供了另一种途径。

研究人员表示,这种新方法适用于很多不同版本的固态锂电池。该团队下一步将展示该系统对各种电池架构的适用性。

SMM在线问答访问TA的主页

上海有色网资讯中心,在线回答您的提问!

SMM在线问答
微信二维码今日有色
微信二维码

微信扫一扫关注

下载app掌上有色
掌上有色

掌上有色下载

返回顶部返回顶部
publicize